

Sketch proposals are for illustrative purposes only & as such are subject to detailed site investigation including ground conditions / contaminants, drainage, design & planning/density negotiations. Sketch proposals may be based upon enlargements of Os sheets & visual estimations of existing site features, accuracy will therefore need to be verified by survey. Sketch proposals have not been considered in respect of CDM Regulation

This drawing and the building works depicted are the copyright of Staniforth Architect. Ltd. and may not be reproduced or amended except by written permission. No liability will be accorded for amendments made by other process.

FOR PLANNING

Notes

Revision Date Initials

<u>Key</u>

= Site boundary

--- = To be removed

■ ■ = New living fence

Existing Grass Retained

Proposed Planting

8 Cycles

= Proposed Reinforced Grass Parking Area

= Retained Tree

= New tree pit & tree

Existing Permitted Parking = 13 cars

Proposed permitted parking = 26 cars

1 disabled

New Tree Specification

= Retained Cedar

= Scots Pine

= Prunus Amagowa

- Fruitus Airiagowa

= London Plane = Beech

Tree species suggested by Oadby and Wigston Arboricultural Officer.

All new trees to be planted within engineered soil cell tree pits.

STANIFORTH

ARCHITECTS

Proposed Parking

The Warehouse 1A Stamford Street Leicester LE1 6NL

www.staniforth.co.uk

Metalfacture

Drawing Status: Cad Reference: Drawn: Checked: Date: FOR PLANNING 1764-P01 DB LS 06-11-2025 1:500@A3

Project No. Draw

1764 PC

P03

Rebuttal

The Borough Council of Oadby and Wigston (161 Gloucester Crescent) Tree Preservation Order 2025.

Land fronting No. 161 Gloucester Crescent, Wigston, Leicestershire, LE18 4YH.

- We have had sight of the proposed document that will be submitted to support; The Borough Council of Oadby and Wigston (161 Gloucester Crescent) Tree Preservation Order 2025.
- 2. With particular reference to paragraphs 3.3 and 3.4 the following comments are made.
- 3. The trees were only cut in the form that is exhibited in the images and viewed on site in May 2025. These cuts are deep between 20 and 30mm, and between 20 and 30mm in width, exceeding the vascular cambium and the bark cambium layers and exposing the inner wood to oxygen.
- 4. The vascular cambium layer is defined as;

The unspecialized tissue one cell thick separating the xylem from the phloem, either within discrete vascular bundles or in the form of a continuous cylinder following secondary thickening. The cambium divides indefinitely to give new xylem and phloem¹. [sic]

5. The bark cambium layer is defined as;

Layers of meristematic cells on the outer side of the phloem that give rise to the bark².[sic]

6. All the trees have been severely barked;

To cut a ring of bark from a woody stem down to the vascular cambium (ie. entirely severing the phloem), so that transport from the aerial part to the roots is largely prevented³.[sic]

- 7. The cambium is a critical growth tissue where new cells are produced, allowing the tree to increase in diameter each year by making new wood (xylem) on the inside and new inner bark (phloem) on the outside.
- 8. It is located just under the outer bark and on top of the sapwood. The layer is responsible for a tree's secondary growth, creating new cells that add girth. When cambium cells divide, they form secondary xylem (wood) toward the centre of the tree and secondary phloem (inner bark) toward the exterior.
- 9. It can be seen from the images and on site, the cutting extends 20 30 mm beyond the cambium layer into the wood. The wood has oxidised and dried out in all cases.
- 10. 'Ring barking', which may also be described as girdling, is the removal or severance of a complete band of bark from around a stem or branch of a tree. The shoots above and beyond (distal) the debarking will die as the ring is complete.

¹ A – Z of tree terms: A companion to British arboriculture.

² ibid

³ ibid

- 11. As with any bark wound the flow of fluids, (sap), from the foliage to other parts of the tree will be disrupted causing the tree to become stressed. This in turn will result in dieback in the crown and root system and colonisation by wood decaying organisms (e.g. fungi).
- 12. A wound to the bark will stimulate the production of callus/wound wood, but the speed of its growth will be insufficient to repair or bridge ring barking wounds.
- 13. The break in the bark will allow the entry of decay causing organisms. The larger the wound is, the greater the severity of decay. The wounds in this case are large.
- 14. The severity of decay will be increased as the xylem tissue is broken.
- 15. A tree that is ring barked on the main stem will not sustain its roots which will survive only until the stored carbohydrates are used up this may be several years in a mature tree.
- 16. Birch trees are known to be poor at compartmentalising wounds (the natural process by which trees "wall off" injured or infected tissue), making them highly susceptible to decay and fungal infections.
- 17. Cedars are known for their ability to compartmentalise dysfunction effectively, which helps them manage decay and can be a sign of a healthy, adaptive tree.
- 18. Cedar species do not regenerate from a cut stump or within the canopy via new shoots. Unlike many deciduous trees, which are well-known for vigorous regrowth after being cut (a practice called coppicing), most conifers like true cedars (genus Cedrus) will die once cut below the lowest branches as in this case.
- 19. There is no evidence of the trees 'bridging' the gap through growth of callus/wound wood. As noted above, mature trees take many years to die, the fact that no die back has been seen in the few months since cutting is immaterial, the buds of the 2025 growing season had already formed and, in the case of birch, had already fully leafed.

Conclusions

- 20. The comments supporting the TPO are tendentious and biased and take no account of the severity of the wounds, the physiological properties of the genera and, produce no evidence to support the position the trees will fully recover.
- 21. The trees will not recover and will decline and die as the wounds to the critical parts of the tree are significant. Birch is a poor compartmentaliser and is readily colonised by decay both latent and extant. Cedar, whilst known for their ability to compartmentalise dysfunction effectively, do not have the ability to regenerate thus, once the foliage above the cut has died, there is no mechanism for new buds to form.

Girdling, Constriction and Ring Barking

Harry W Pepper

Arboricultural Advisory and Information Service

Summary

Trees can be damaged by many living (biotic) and non-living (abiotic) agents and the symptoms may be very similar. When the damage is caused by a mammal, including man, removing the bark from around a part of a tree diagnosis should be relatively straight forward. The commoner causes of girdling and constriction and possible preventative measures are reviewed.

Introduction

Trees are sometimes ring barked intentionally, but more frequently as a result of negligence or ignorance. This Note looks at the causes and responses of trees to mutilation of the trunk and reviews treatments for damaged trees.

What is Ring Barking?

'Ring barking', which may also be described as girdling, is the removal or severance of a complete band of bark from around a stem or branch of a tree. The shoots above and beyond (distal) the debarking will usually die, but if the ring is incomplete and strips of bark remain intact the distal parts may survive. However, as with any bark wound the flow of fluids, (sap), from the foliage to other parts of the tree will be disrupted causing the tree to become stressed. This in turn can result in dieback in the crown and root system and colonisation by wood decaying organisms (e.g. fungi).

A wound to the bark will stimulate the production of callus tissue, but the speed of its

growth may be insufficient to repair or bridge most ring barking wounds. The resultant dead wood developing distal to the ring barking may become a potential safety hazard to people and property.

Any break in the bark can allow the entry of decay causing organisms, but wound size is important. The larger the wound is the greater the severity of decay (Pawsey and Gladman

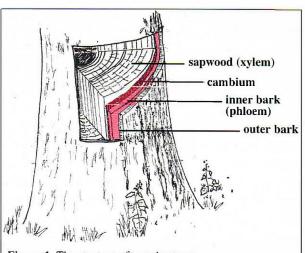


Figure 1. The stucture of woody stems.

1965). Also, the severity of decay may be further increased if the xylem tissue is broken (Strobbe *et al* 2002). Therefore damage to the bark may reduce the safe life expectancy of the tree despite the wound being closed (occluded) eventually by the callus.

The term ring barking generally refers to more than the removal of just the outermost layer of protective bark as occurs in harvesting cork from the Cork Oak (*Quercus suber*). Ring barking will generally involve removal of all the tissue from the outer bark through to the sapwood (xylem). This includes the outer bark,

AAIS

the inner bark (phloem) and the cambium, (figure 1). The cambium is a thin layer of living cells that, through cell division, differentiates to produce xylem on the inside and phloem on the outside. Destruction of the cambium, therefore, prevents the production of both new wood (xylem) and phloem tissue.

The phloem or inner bark performs the important function of transporting synthesised carbohydrates down from the leaves to other parts of the tree including the roots. Roots depend on leaves for the food (energy source) they need to grow and absorb water and nutrients. The outer bark is the layer that protects the stem and branches from desiccation, extremes of hot and cold weather and physical impact damage. It also acts as a barrier to attack from insects and pathogens. The outer bark is formed as new phloem cells produced by the cambium push the inner bark phloem cells outwards. As the old phloem becomes remote from the cambium it dries and hardens. The inner and outer bark together, are generally referred to as Bark.

Ring barking may occur as a result of a single event or an accumulation of events over a period of time and the consequential death of stems and branches may not be apparent for a long time. These events may be caused by domesticated or wild animals, disease- causing organisms or by man accidentally or deliberately. Deliberate damage may take the form of planned tree management, vandalism or criminal intention to kill a tree or trees.

Ring barking in cultural history

Ring barking has been used for centuries as a means of clearing woodland. The dead standing trees are allowed to disintegrate and so removing the need to clear vast amounts of lop and top. For similar reasons it was a technique advocated when harvesting coppice poles. The useable poles were cut for market and the remainder were left uncut, but ring barked to encourage the production of new basal shoots (figure 2) (Tansley 1968).

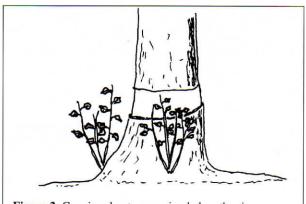
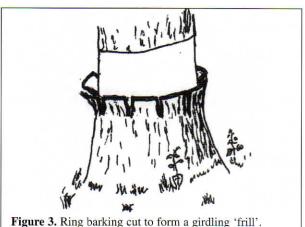



Figure 2. Coppice shoots emerging below the ring.

Between 1650 and 1830 European settlers in North America cleared vast areas of trees by ring barking their stems (Rackham 1986). The settlers discovered that American species were more susceptible to this treatment than European species.

In the 1960s and 1970s ring barking the lower part of the main stem was used extensively in southern England as a cheap method of clearing, for replanting, what was then classified as scrub broadleaved woodland. The larger trees were ring-barked and to prevent coppice growth from below the ring the wound was treated with chemicals. The ring was cut to form a girdling 'frill' (figure 3) into which a mixture of the herbicide 2,4,5,T and oil was sprayed or poured. 2,4,5,T disrupts the metabolism of the tree, but not all tree species are susceptible to it. This treatment no longer has approval¹ 2,4,5,T is therefore no longer available although the application of a highly soluble systemic herbicide whilst the tree is still alive could be an effective alternative.

right of rang sarang out to room a graining frin

In more recent times the practice of ring barking large trees to create a reservoir of dead standing wood to enhance wildlife populations and species diversity has become fashionable and is actively encouraged by wildlife conservationists.

Tree Management

A tree that is ring barked on the main stem will not sustain its roots which will survive only until the stored carbohydrates are used up – this may be several years in a mature tree. Therefore ring barking, before felling and preferably during the growing season, is a technique sometimes used to reduce the oftenintractable problem of root sucker formation. This practice of depleting roots was also tested as a pre-felling treatment with the aim of controlling the spread of Honey fungus (Armillaria spp.). The hypothesis was that post felling the stump and roots of a healthy tree, that had been depleted of carbohydrates, were less likely to become colonised by Honey fungus and therefore act as a reservoir of infection to other or replacement trees. Also, ring barking could possibly result in the roots being more easily colonised by other saprophytic fungi, which in turn would reduce the volume of material available to Honey fungus. The results of ring barking trials in Britain showed that a more rapid decay of roots occurred in treated than untreated trees, but this did not provide the expected benefit of reducing the mortality of trees planted subsequently (Redfern 1968).

Selective thinning of woodland and in particular plantations by ring barking unwanted trees (Reque and Bravo 2007) is practiced in North America, but it has not found favour in Britain. The main advantages of this technique are that the risk of wind blow is reduced due to a gradual opening of the canopy and an increase in wildlife species density and diversity due to an increase in volume of standing dead wood. The disadvantages are that there is no marketable thinning material produced and the ring barked trees might sprout vigorous coppice shoots from below the ring. There is also a safety issue when the public have access to the woodland.

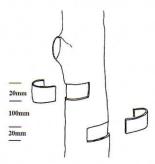
Negligent or wilful damage

Poor tree management practices and careless green space management are frequent causes of accidental damage to trees. Impact damage to roadside trees from motor vehicles and from mowing machines (figure 4) to trees growing

Figure 4. Mowing machine damage.

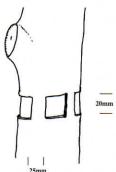
in amenity grass is unfortunately all too common as is damage to the lower stems of young amenity trees from 'strimmers' (Patch and Denyer 1992). The latter should be well known and readily identified. It is also not unknown for a tree to be inadvertently ring barked when severing ivy. These incidents are all avoidable with care and skilled workmanship. They should not be tolerated!

Trees are ring barked wilfully, often in anger by a third party, with a chain saw, hand saw, axe or even a knife. The tool is drawn around the tree severing the bark and often cutting deep into the sapwood (xylem) creating a full or complete ring around the circumference of the tree. The tree may not be fatally wounded if the ends of the saw cut do not meet or the cut fails to extend through the natural flutes in a stem. A high level of skill is required to achieve a closed ring, especially on a tree trunk that is heavily fluted or buttressed. A complete


encircling cut will usually not only kill the tree, but because of damage to the wood may also leave the tree standing in a potentially dangerous and unacceptable condition.

Beware

Deliberately ring barking, with the intention of killing a tree that is either protected by a Tree Preservation Order (TPO) or within a Conservation Area (CA) is a criminal offence. Even if the tree does not die, the offence of 'damage in a manner likely to destroy' is the same as that of 'destruction' of a protected tree and carries the heaviest penalties available to Courts in respect of TPOs. Killing trees by ring barking does not negate the requirement for a felling licence


Box 1: Controlled Ring Barking method for apple and pear trees:

This involves cutting out two strips of bark each approximately 20mm wide and extending at least half way round the trunk. These are made on opposite sides of the tree in a way that the flow of sap is deflected but not interrupted completely. The effect of the ringing on the tree can be intensified if the ends of the cut bark strips are overlapped slightly, but there must be a minimum vertical gap between the semi circles of 100mm.

Controlled ring barking.

A less severe approach is to remove 20mm wide sections of bark in a ring from around the trunk. There should be at least 25mm of untouched bark left between each section.

Section ring barking.

Ring barking and harvesting

Tree functions may be manipulation by ring barking (Bush 1946). Fruit bud production in apple and pear orchards is sometimes encouraged at the expense of shoot and foliage growth by the practice of 'controlled ring barking' (Box 1). An alternative method used by fruit growers to reduce shoot extension growth on young vigorous trees is often referred to as 'bark ringing' (Box 2). This involves excising with a sharp knife a narrow strip of bark around a trunk at a height of approximately 1m from the ground – that is above the root buttresses and remote from major flutes in the trunk.

Box 2: Bark ringing method for young vigorous apple and pear trees:

- First measure out the width of the band (a useful aid is to stick adhesive tape around the trunk to guide the two parallel cuts).
- The band must be only 3mm wide on a small tree, graduating to no more than 10mm on a very large tree
- · Score the band with a knife.
- Cut through the bark and the cambium layer and remove the bark within the band down to the sapwood all the way round. Do not damage the underlying wood.
- Finally seal the wound immediately with several layers of water-proof adhesive tape. The tape must cover the wound without touching the cambium layer.

Bark ringing should be done in spring to enable the wound to callus over by the autumn when the waterproof tape may be removed with care. The following year the tree should produce much more blossom and consequently a much heavier crop of fruit

This technique has not been used on ornamental trees, but there is no reason why similar effects should not be achieved. May also be used for temporary slowing of the growth of trees that are too vigorous for their location.

Ring barking procedures on Apples (*Malus* spp) should be done only in April and May between the pink bud stage and petal fall. Controlled ring barking must be carried out skilfully and carefully otherwise the tree may die or be seriously harmed. It should therefore only be used with caution and it should never

be used on stone fruit trees (Cherries (*Prunus* spp) etc'), as they are not tolerant of this type of treatment and will almost certainly be killed. Partial ring barking is used in some regions of the world to harvest sap flow for example to tap for rubber, maple syrup and birch sap.

Ring barking in nature

Several species of wild mammal remove bark from trees, but the effect is usually dieback distal to the damage and is the same as that following man-made damage. Ring barking by mammals is a deliberate form of damage as it is always associated with or triggered by a specific behavioural activity such as feeding, social interactive aggression between individuals or boredom. It is never accidental. With the exception of damage by Beavers (Castor fibor), which is made with the intention of killing the tree, death of the tree or part of the tree is always secondary to the original cause. Ring barking may occur on a single occasion or it may be the result of the accumulation of more than one damaging event over one or more years.

Where on the tree the ring barking occurs depends on the species of damaging animal and in some situations the weather conditions at the time (Hodge and Pepper 1998).

Field voles (*Microtus agrestis*), for example, are common residents of rough grassland and will frequently girdle the roots and lower stem of any young conifer and broadleaved trees present. The damage will be up to the height of the surrounding vegetation. They remove and eat the bark at any time of year; the most likely time is late winter and early spring when animal numbers are high and their main food, green grass, is in short supply. Bank voles (*Clethrionomys glareolus*), unlike Field voles will climb pole-stage trees within woodland and hedgerows and ring bark their stems and branches. However, this form of damage is rare.

Rabbits (Oryctolagus cuniculus) will ring bark the lower stem (up to a height of 500mm) of most tree and shrub species of most ages (figure 5). Thin barked trees such as Beech (*Fagus sylvaltica*) and Ash (*Fraxinus excelsior*) are particularly vulnerable as are apple trees. Cox's Orange Pippin is probably the most extensively and severely damaged variety. Ring barking occurs during winter and early spring and especially during periods of prolonged snow cover. Deep snow around trees will enable rabbits to ring bark further up the stem than normal.

Figure 5. Ring barking by rabbits.

During May, June and July **Grey squirrels** (*Sciurus carolinensis*) will ring bark the stem and branches where the bark is relatively thin on most broadleaved and conifer species. Bark is removed as a result of aggressive social behaviour and this activity is high in years when squirrel numbers are high and when there is a large proportion of juveniles in the population. There is also a link between bark removal, phloem thickness and tree vigour (Kenward *et al.* 1988). The thicker the phloem the easier it is for a squirrel to peel off the bark. The most vigorous trees, those that have the thickest phloem layer, are at greatest risk of being ring barked.

Fraying by male deer, that is the rubbing of antlers to remove the covering of velvet, often results in the loss of bark around the entire circumference of a young whippy 'sapling' tree. **Roe deer** (*Capreolus capreolus*) bucks mark territory by similarly rubbing the gland between their antlers against a young tree. This is a less violent activity than antler cleaning and seldom ring barks the tree.

Large farm animals such as **sheep** and **horses** will bite off the bark from unprotected trees. The latter will ring bark trees, particularly in hedgerows, for food in late winter in some years or as a displacement activity, at any time of year, as a result of boredom. **Cattle** utilise trees as rubbing posts and repeated rubbing over a period of time may wear away the bark from around a tree. Deep flutes in the trunks of mature trees may retain channels of bark avoiding a complete ring of bark being rubbed away allowing the tree to survive and possibly eventually recover provided protection is given.

Root infecting fungi can kill trees. When an infection spreading along a root reaches the root collar it can girdle the stem.

Note: Occasionally the foliage on small twigs, particularly those of Yew (*Taxus baccata*), may brown and die. Examination often reveals a narrow strip around the twig where the bark has been removed during the maturation feeding of adult weevils.

Constriction

Strangling or constricting a stem or branch of a tree does not physically remove a ring of bark, but it can damage the cambium layer to an extent that it can have the same effect as ring barking. The parts of the tree distal to the point of constriction may die. Alternatively, a constricted stem or branch may not be able to develop sufficient diameter growth to counteract bending forces as the tree continues to grow upwards and outwards. This often leads to stem breakages during high winds or under the weight of snow (figure 6).

Strangulation is generally the result of bad practice, (e.g. sometimes ignorance), or poor maintenance or a combination of the two.

Figure 6. Tree stem snapped at the point of constriction by tree tie.

Occasionally, recently planted large ball-rooted trees suffer poor growth or dieback because the main stem had been constricted during the planting process. In such cases the tree had been lifted using a sling secured in a strangle around the lower stem at the approximate balance point between the aerial parts and the root ball of the tree. Such action is bad practice and should be avoided because the considerable weight of the tree supported on the sling can crush and kill the cambium or slough the bark.

Trees are sometimes used inappropriately as straining posts for temporary fencing. The fence line wire or wire mesh netting is secured in place by winding it around and stapling it to the stem of an established tree. All too often the temporary fence is left in place long after the need for one is past and it becomes embedded in the tree. This is a problem that is particularly associated with hedgerow trees. Farmers will close a gap in a hedge by tensioning one or more strands of barbed wire between two trees — one on either side of the gap. Not only is this bad for the tree it also renders a significant hazard when the tree has to be felled and cut up.

Other causes of strangulation include tree ties (figure 7), guy ropes and wires that have not been loosened or removed and spiral guards that have been left in place long after the risk of damage has passed (Figure 9). Tie-on labels

Figure 7. A neglected tree tie.

if not removed from planted fruit and amenity trees can have the same growth inhibiting effect as controlled bark ringing. Also, loops and collars used to secure lights or CCTV cameras and their associated cabling can, if neglected, become increasingly tightly wound around an expanding tree trunk or limb. Bracing used to support structurally weak branches in the crowns of over mature or veteran trees, if not constructed and maintained in accordance with approved guidelines (BS 3998), may cause strangulation. Similarly in parks, gardens and play areas, collars fitted around trunks and branches as anchoring points for observation platforms, climbing frames and tree house structures must have a built-in ability to be opened out to allow for natural expansion of the tree's circumference. In fact anything that is placed around the tree and not maintained may result in damage.

Note: Pathogens that affect the shoots and twigs of trees cause dieback. The junction between live and dead tissue may have the appearance of a constriction.

Prevention is better than cure

Damage prevention is always better than cure and therefore the risk of ring barking should be either avoided or, at least, reduced as far as possible. In order to achieve these aims it is necessary to understand what leads to the

Figure 8. Damaged tree as a result of incorrect choice of guard

damage in the first instance. Psychologists would probably explain ring barking by vandals as being indicative of boredom and /or frustration. There have been occasions when ring barking has been the result of wilful damage to a tree in a third party's property that is seen to be a nuisance, but about which the owner will not cooperate. So the question is why and how can these emotions be countered? Deliberate, malicious ring barking usually results from disputes and is considered unreasonable by the vast majority of people. It therefore can be best prevented by good neighbourliness and open dialogue. However, some people will always be frustrated enough to pursue direct action to achieve their selfish desires.

Damage caused by wild and domesticated animals may also be triggered by boredom or frustration although the need for food may also have some validity. Therefore an awareness and understanding of existing circumstances and potential threats is important when preparing tree management plans.

Fully trained operators properly supervised and equipped with the appropriate tools will reduce the risk of wild animal damage by reducing the animal population, providing alternative food sources or installing barriers (Pepper *et al* 1985). Damage to trees by domesticated

animals is generally the result of poor husbandry.

The provision of guards, particularly around immature street and parkland trees, should reduce the risk of accidental damage from strimmers, mowers, pushchairs, cycles and motor vehicles. Well planned and executed maintenance procedures should be in place to ensure that tree ties, guards and anything that could form a tight collar around a branch or stem, are loosened in spring to accommodate tree growth (Patch 1989). Also, they must be removed as soon as they are no longer performing a useful purpose. Stakes, ties and guards for example, must be removed once they are no longer required or effective. If they cannot be removed because the tree is still at risk of being damaged, but to leave guards may result in them causing damage to the tree, there is likely to have been a deficiency in the cultural practices and/ or the chosen design or possibly the construction of the support or guards (Pepper et al 1985).

Tree guards come in a wide range of designs, shapes and sizes and are fabricated in a range of different materials. It is therefore important that the guard used is chosen carefully (figure 9) and maintained so that it has a design life that will be effective against the identified damaging agent or agents and for as long as those agents pose a risk to the tree. Some guards are designed for a specific purpose, for example, those that protect against damage by 'strimmers'. The choice may then be limited, but neglect of the guard can still result in constriction damage to the tree. Alternative methods of vegetation control should be sought if timely removal of a strimmer guard cannot be guaranteed.

Young trees are protected from **Field voles** with split plastic tube tree guards. The top of the guard must extend above the height of the immediate surrounding vegetation. If it does not a vole will be able to climb up the vegetation and damage the tree above the guard. Tree shelters can give protection against **Field voles** provided the shelter is pushed into

Figure 9. Neglected spiral tree guard.

the ground to ensure that there are no gaps between the bottom of the shelter and the ground and the top of the shelter is above the surrounding vegetation. Any **vole** inside a shelter will, under the protection the guard gives against predators, almost certainly ring bark and probably completely gnaw off the enclosed tree.

Effective weed control, intended primarily to reduce competition with young trees (Davies 1987), by creating bare ground conditions, also reduces the incidence and severity of bark stripping damage by **voles** and coincidentally the need for strimmers etc. However, it should be remembered that when mulch mats are used to control vegetation the mats must be secured to the ground around their perimeter to prevent voles tunnelling beneath the mat and, out of sight of avian predators, ring barking the tree roots.

Because of their ability to climb there is no reliable way that trees can be protected from ring barking by **Bank voles**.

Wire mesh and plastic mesh or tube guards with a minimum height of 0.6m are the principle method of protecting trees from **rabbits**. Spiral plastic guards are frequently used to protect trees against **rabbits** and were

originally intended for use on feathered trees where the spiral can be wound around the tree stem between the branches. Unfortunately, because they are cheaper than most other types of guard, and can be applied without any particular skill, they are frequently applied to the clean pruned stems of standard trees and whips. On a clean stem and without the support of branches spiral guards collapse in warm weather or as they degrade over time and loose their rigidity. The collapsed guard, with overlapping spirals that bind on themselves, can form a constriction around the stem. As a consequence all the parts of the tree above the constriction are likely to die. When death occurs, coppice shoots often sprout from below the constriction creating a multiple stemmed tree (figure 9) and that is unlikely to be acceptable in an amenity planting of single stemmed trees.

An alternative to guards is to paint or spray the vulnerable area of the tree with the chemical repellent 'Aaprotect' (Pepper *et al* 1996). This product repels by irritating animal tissue particularly that of the nose and mouth of the gnawing animal. However, Aaprotect² should not be used in areas of public access because it may cause skin disorders such as dermatitis.

Controlling **squirrel** numbers is the recommended method of preventing ring barking of stems and branches by Grey squirrels. Arboricultural Practice Note 7 *Grey squirrels in parks, urban woodlands and amenity plantings* gives details of the methods available.

Repairing/remedial action

There are accounts of severely ring barked trees repairing themselves naturally by closing the wound with callus growth from above and below. Callus may also develop over the whole wound surface, in wounds caused during the growing season, from exposed and undamaged cells (ray parenchyma) and young differentiating xylem cells (Stobbe *et al* 2002). There is some evidence that species of Lime (*Tilia*), for example, may be able to grow new

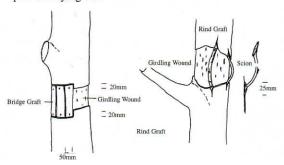
bark from a debarked area provided drying can be restricted. Wrapping black polythene sheeting over the wound can be unsightly but it may be beneficial on a valuable tree. Natural repair in this way is however extremely rare and should not be expected to occur. Once damage has occurred some repair using fresh bark may be possible (Garner 1958) but the success will depend on tree species, habitat, time of year and the period since the damage happened. The sooner remedial action is taken after the damage has occurred the greater the chance of success. Narrow wounds, such as those caused by a hand saw blade, may heal naturally.

Repairing girdling wounds with bark implants or scions (bridge grafts) may in some situations be possible (**Box 3**). It is known that fruit tree growers have used bridge grafts successfully to save trees that have been ring barked by **rabbits** (Bush 1946).

Bridge grafting is a labour intensive operation and there is a low probability of it being successful. It should therefore only be considered as a last resort action to save a rare or high value amenity tree.

There are no alternative options available, including chemical formulations, which will enable a tree to recover from ring barking. On the occasions where ring barking is incomplete it should be possible, in theory, to treat chemically the vertical edges of the remaining bark to encourage an increase in callus growth and therefore a more rapid increase in the volume of tissue capable of transporting liquids down the tree than would otherwise occur naturally. Unfortunately, in practice, although there is some evidence that there are chemicals that may have this property none are currently available for use. Therefore restoration of the phloem must rely on natural callus growth. However, the site of an incomplete ring barking wound is likely to remain entry port for decay causing organisms and a structurally weak point that may fracture during periods of strong wind or heavy snow.

9


² Aaprotect may, under the EU *Plant Protection Products Directive*, be withdrawn at sometime in the future. Therefore, its current status under the *Control of Pesticides* Regulations 1986 must be checked before it is used.

Box 3: Bridge Grafting

Bridge grafting is the reconnection of the upper and lower edges of the debarked ring using either strips of fresh bark or scions. The principle upon which the technique is based is that the tree does not die immediately following girdling. Water continues to pass up the xylem, the leaves continue to function but the movement of carbohydrates down the tree is prevented. The starved roots take some time to die so allowing time for the reconnecting graft to become established.

- 1) The technique of bridge grafting with bark involves:
- Cutting away a length of bark, 20mm wide from above and below the girdling wound.
- Patches of bark 50mm wide and as long as the newly enlarged girdle are cut from elsewhere on the tree.
- The patches are placed to cover the newly exposed wood and secured with small nails.

It is important that during and after the repair procedure the girdle and patch area are kept moist. They should be immediately covered by tape to prevent drying out.

Bridge grafting with bark Bridge grafting with scions

- 2) Bridge grafting with scions is preferred when the area to be bridged is wide. It involves:
- Cutting sufficient length of dormant scions to bridge the damage and to enable ease of manipulation. If dormant scion material is not available freshly collected defoliated shoots of the past season's growth may be used.
- At each end of the scion a diagonal cut is made below a bud.
- The lower end of the scion is inserted into a 25mm incision made with a pruning knife in the bark below the girdle.
- The bark is eased away from the cambium on either side of the incision so that the cut surface of the scion can be positioned in contact with the exposed cambium of the stem. The scion is secured with a nail.
- The upper end of the scion is attached in a similar fashion whilst ensuring that the scion is bowed out 40 to 50mm away from the girdle.
- The upper and lower grafts (rind grafts) are sealed with tape or petroleum jelly to prevent water entering them.
- Sufficient scions are prepared to allow one bridge for every 25mm of stem girth.
- In the event that the girdle is very wide two scions can be joined together with a whip and tongue graft.

It should be remembered that after grafting the tree should be protected if it is still vulnerable to the debarking agent/damage.

Is action worse than the cause?

Mention has been made of the animal repellent Aaprotect and this may suggest the use of anti vandal paint is acceptable. Unfortunately the principal ingredient of these products is usually grease and that can clog the bark and kill the underlying cambium creating girdling damage.

From time to time bands are painted around the trunk of a tree for identification or as a marker. Use of oil-based paint can prove damaging to the tree. Equally problematic can be attempts to correct the error by using paint stripper. Only specifically formulated 'tree paint' should be applied to trees.

A colleague has experienced one incidence where horses were damaging an avenue of trees. The wife of the owner recognised the cause of the damage and instructed the gardener to paint the trunk of each tree from ground level to a height of 2.5m. Fine in theory but disastrous in practice because creosote was used! The consequence was that the avenue was lost.

Conclusion

On very rare occasions, in the management of trees and orchards, ring barking may be considered a legitimate management technique. However, it is mostly an unplanned and unwanted occurrence of nature, or man's negligence and complete ring barking generally results in the death of all living tissue beyond the ring. Furthermore there are no reliable treatments available that will repair or mitigate the after effects of ring barking. Therefore, prevention of ring barking through good husbandry and sound tree management practices must be the primary objective.

Acknowledgements

Thanks are due to Bryan Wilson for his initial suggestion for this note, the three wise men of AAIS (Derek Patch, Ben Holding and Brian Grieg) for their comments and professional guidance during its drafting and to my long standing colleague Paul Collis for reading the draft and as always providing invaluable comments.

Derek Patch supplied photographs and drawings are by the author.

References and Further Reading

Bush R. (1946) *Tree fruit growing Vol. 1 Apples*. A Penguin Handbook, Penguin Books, Harmondsworth, England.

British Standard BS3998 Recommendations for tree work. British Standards Institution, London.

Davies R. J. (1987) Trees and weeds. *Forestry Commission Handbook No. 2*. HMSO, London.

Garner R. J. (1958) *The grafter's handbook*. Faber and Faber, London.

Hodge S. and Pepper H. W. (1998) The prevention of mammal damage to trees in woodland. *Forestry Commission Practice Note No. 3.* Forestry Commission, Edinburgh.

Kenward R.E., Parish T., Holme J. and Harris E.H.M. (1998). Grey squirrel bark stripping. I. The roles of tree quality, squirrel learning and food abundance. *Quarterly Journal of Forestry* 82, 167-172.

Patch D. (1989) Stakes and Ties. *Arboriculture Research Note No. 77/89/ARB*. AAIS, Farnham.

Patch D. and Denyer A. (1992) Blight to trees caused by vegetation control machinery. *Arboriculture Research Note 107/92/ARB*. AAIS, Farnham.

Pawsey R. G. and Gladman R. J. (1965) Decay in standing conifers developing from extraction damage. *Forestry Commission Forest Record No. 54*. HMSO, London.

Pepper H. W. Neil D. and Hemmings J. (1996) Application of the chemical repellent Aaprotect to prevent winter browsing. *Forestry Commission Research Information Note 289*. Forestry Commission, Farnham.

Pepper H. W. Rowe J. J. and Tee L.A. (1985). Individual tree protection. *Arboricultural Leaflet 10*. HMSO, London.

Pepper H.W. (2004). Grey squirrels in parks, urban woodlands and amenity plantings. *Arboricultural Practice Note No.* 7. AAIS, Farnham.

Rackham O. (1986) *The history of the countryside*. Phoenix Press, London.

Redfern R. (1968) The ecology of *Armillaria* mellea in Britain. *Annals of Botany 32 (26)* 293-300.

Requé J. A. and Bravo F. (2007) Viability of thinning sessile oak stands by girdling. *Forestry* 80(2).

Stobbe H., Schmitt U., Eckstein D. and Dujesiefken D. (2002) Development stages and fine structure of surface callus formed after debarking of living lime trees (*Tilia* sp.). *Annals of Botany 89 (6)* 773-782.

Tansley A. G. (1968) *Britain's Green Mantle*. George Allen and Unwin Ltd.

© Copyright AAIS 2008.

Not to be reproduced without the publisher's permission ISSN 1358-8249

OTHER TITLES IN THE SERIES

APN 1 Driveways Close to Trees
(superseded by APN 12)

APN 2 Compost from Woody Wastes

APN 3 Trees in Dispute

(superseded by APN 11)

APN 4 Root Barriers and Building Subsidence

APN 5 Shaded by Trees

APN 6 Trees and Shrubs for Noise Control

APN 7 Grey Squirrels in Parks, Urban Woodlands and Amenity Plantings

APN 8 Trees Bleeding

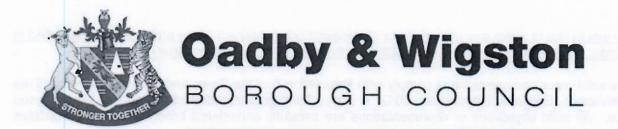
APN 9 Management of Avenue Trees

APN 10 Ivy - Boon or Bain

APN 11 Trees and Hedges in Dispute

APN 12 Through the Trees to Development

For details of subscriptions, costs of publications and services Telephone 01420 22022



ARBORICULTURAL ADVISORY and INFORMATION SERVICE

ALICE HOLT LODGE • WRECCLESHAM • FARNHAM • SURREY • GU10 4LH

Tree Helpline: 09065 161147

The Arboricultural Advisory and Information Service provides advice and information about trees based on research results and experience, both national and international, to arboriculturists, landscape architects, the construction industry and other professionals, also to private individuals. This service is part of the Tree Advice Trust.

The owners and occupiers 161 Gloucester Crescent Wigston Leicestershire LE18 4YH

Email:

Michael.bennetto@oadby-wigston.gov.uk

Web Site: Extension: Our ref:

www.oadby-wigston.gov.uk Please ask for: Mr Michael Bennetto 0116 2572697 TPO/0374/TREE

Dear Sir/Madam

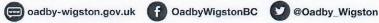
Re: The Borough Council of Oadby and Wigston (Gloucester Crescent) Tree Preservation Order 2024 ("the Order")

We write in relation to the above Order, made by the Council on the 27 November 2024 that, in simple terms, the Order, prohibits the cutting down, topping or lopping of the trees specified in the Order and shown on the plan appended to the Order.

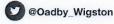
As your property is affected by the Order you are an interested person and as such the Council has a duty to consult you prior to confirming the Order.

We enclose for your information:

- A copy of the above Order accompanied by a plan.
- A Notice under Regulation 6 of the Town and Country Planning (Tree Preservation) (England) Regulations 2012 ("the Notice").
- 3. A Requisition for Information as to ownership and occupation of the land at the address stated within. Please complete and return the requisition to us as soon as possible and in any event no later than (3 weeks).
- Some explanatory guidance on tree preservation orders.


As your property is affected by the Order you are an interested person and, as such, the Council has a duty to consult you prior to confirming the Order.

The Town and Country Planning (Tree Preservation) (England) Regulations 2012 state that a copy of the Order and a Notice must be served on all interested persons. This is to inform those interested persons of their right to make objections or representations about the Order.



Postal Address: Brocks Hill Council Offices, Washbrook Lane, Oadby, Leicester, LE2 533 Refuse & Recycling Centre: The Depot, Wigston Road, Oadby, Leicester, LE2 5JE Telephone: (0116) 288 8961 Email: customer.services@oadby-wigston.gov.uk

If you would like to make any objections or representations in respect of the protected tree specified in the Order, please do so in writing within 28 days from the date you receive this notice.

To be valid, your comments must comply with Regulation 6 of the Town and Country Planning (Tree Preservation) (England) Regulations 2012, a copy of which is included at the end of the enclosed Notice. All valid objections or representations are carefully considered before the Council decides whether or not to confirm the Order.

Yours faithfully,

Mr Michael Bennetto

Arboricultural Officer
Oadby & Wigston Borough Council

Enc. As listed above

Town and Country Planning Act 1990

The Borough Council of Oadby and Wigston (Gloucester Crescent) Tree Preservation Order 2024

The Borough Council of Oadby & Wigston, in exercise of the powers conferred on them by sections 198 of the Town and Country Planning Act 1990 hereby make the following Order:-

Citation

1. This Order may be cited as The Borough Council of Oadby and Wigston (Gloucester Crescent) Tree Preservation Order 2024, TPO/0374/TREE.

Interpretation

2. (1) In this Order "the authority" means the Borough Council of Oadby and Wigston unless the context otherwise requires.

(2) In this Order any reference to a numbered section is a reference to the section so numbered in the Town and Country Planning Act 1990 and any reference to a numbered regulation is a reference to the regulation so numbered in the Town and Country Planning (Tree Preservation) (England) Regulations 2012.

Effect

3. (1) Subject to article 4, this Order takes effect provisionally on the date on which it is made.

(2) Without prejudice to subsection (7) of section 198 (power to make tree preservation orders) or subsection (1) of section 200 (tree preservation orders: Forestry Commissioners) and, subject to article 14, no person shall-

(a) cut down; top; lop; uproot; wilfully damage; or wilfully destroy; or

(b) cause or permit the cutting down, topping, lopping, wilful damage or wilful destruction of, any tree in the Schedule of this Order except with the written consent of the authority in accordance with regulations 16 and 17, or of the Secretary of State in accordance with regulation 23, and, where such consent is given subject to conditions, in accordance with those conditions.

Application to trees to be planted pursuant to a condition

4. In relation to any tree identified in the first column of the Schedule by the letter "C", being a tree to be planted pursuant to a condition imposed under paragraph (a) of section 197 (planning permission to include appropriate provision for preservation and planting of trees), this Order takes effect as from the time when the tree is planted.

Dated this 27 day of November 2024

The Common Seal of the Borough Council of Oadby and Wigston was hereunto affixed in the presence of:-

(Head of Law & Democracy)

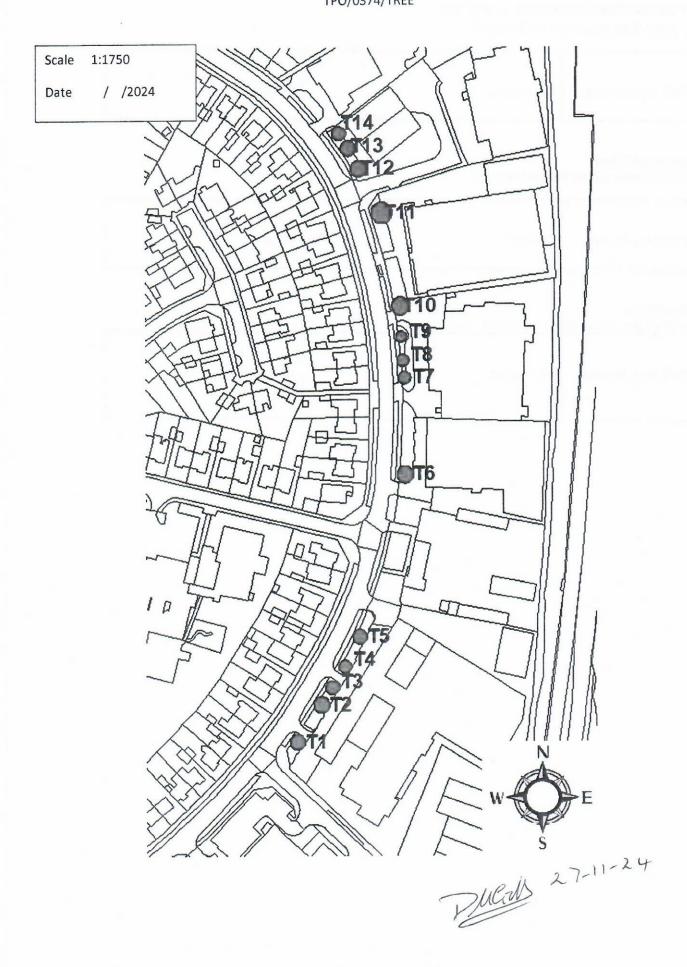
CONFIRMATION OF ORDER

This Order was confirmed by the Oadby and Wigston Borough Council at its meeting of the Development Control Committee/under delegated powers* without modification on the day of 20 .
Minute Reference:
Officer:
CONFIRMATION OF ORDER SUBJECT TO MODIFICATION
This Order was confirmed by the Oadby and Wigston Borough Council at its meeting of the Development Control Committee/under delegated powers* on the day of 20 , subject to the following modifications:
Minute Reference:
Officer:
DECISION NOT TO CONFIRM ORDER
A decision not to confirm this Order was taken by Oadby and Wigston Borough Council at its meeting of the Development Control Committee/under delegated powers* on the day of 20 .
Minute Reference:
Officer:

DECISION TO VARY ORDER

A decision to vary Development Contro	this Order was taken to ol Committee/under delega	by Oadby and Wigston Borough Council at atted powers* on the day of	its meeting of the 20 .
Minute Reference:			
Officer:			
	DECIS	ION TO REVOKE ORDER	
A decision to revok Development Contro	ke this Order was taken of Committee on the	by Oadby and Wigston Borough Council at day of	its meeting of the 20 .
Minute Reference:			
		* De	elete as appropriate

SCHEDULE


SPECIFICATION OF TREES

Trees specified Individually (encircled in black on the man)

encircled in black on the map)				
Reference on map	Description	Situation		
T1	Blue Cedar (<i>Cedrus atlantica</i> 'Glauca')	Frontage of 161 Gloucester Crescent		
T2	Blue Cedar (<i>Cedrus atlantica</i> 'Glauca')	Frontage of 161 Gloucester Crescent		
Т3	Silver Birch (<i>Betula pendula</i>)	Frontage of 161 Gloucester Crescent		
T4	Silver Birch (<i>Betula pendula</i>)	Frontage of 161 Gloucester Crescent		
T5	Blue Cedar (<i>Cedrus atlantica</i> 'Glauca')	Frontage of 161 Gloucester Crescent		
Т6	Rowan (<i>Sorbus</i> sp.)	Frontage of 185 Gloucester Crescent		
Т7	Purple Beech (<i>Fagus slyvatica</i> 'Purpurea')	Frontage of 193 Gloucester Crescent		
Т8	Purple Beech (<i>Fagus slyvatica</i> 'Purpurea')	Frontage of 193 Gloucester Crescent		
Т9	Purple Beech (<i>Fagus slyvatica</i> 'Purpurea')	Frontage of 193 Gloucester Crescent		
T10	Horse Chestnut (Aesculus hippocastanum)	Frontage of 193 Gloucester Crescent		
T11	Maple (<i>Acer</i> sp.)	Frontage of 205 Gloucester Crescent		
T12	Rowan (<i>Sorbus</i> sp.)	Frontage of 211 Gloucester Crescent		
T13	Maple (Acer sp.)	Frontage of 213 Gloucester Crescent		
T14	Rowan (<i>Sorbus</i> sp.)	Frontage of 213 Gloucester Crescent		

Trees specified by reference to an Area (within a dotted black line on the map)				
Reference on map	Description	Situation		
Groups of Trees (within a broken black	line on the map)			
Reference on map	Description	Situation		
Woodlands (within a continuous b	lack line on the map)			
Reference on map	Description	Situation		

Reference on map

IMPORTANT - THIS COMMUNICATION MAY AFFECT YOUR PROPERTY

TOWN AND COUNTRY PLANNING ACT 1990 TOWN AND COUNTRY PLANNING (Tree Preservation) (England) REGULATIONS 2012

The Borough Council of Oadby and Wigston (Gloucester Crescent) Tree Preservation Order 2024 ("the Order")

Oadby & Wigston Borough Council

THIS IS A FORMAL NOTICE which is served on you because on 27 November 2024. the Council made the above Order in respect of land in which you appear to have an interest.

A copy of the Order is enclosed. In simple terms, it prohibits you from cutting down, topping or lopping any of the trees specified in the First Schedule and shown on the plan without the consent of the Council.

The Councils reasons for making the order are that the trees are considered to enhance the visual amenity of the area and they provide valuable screening.

The Order was brought into effect provisionally on 27 November 2024. The Order will continue in force for a period of up to 6 months from the date the Order was made, or until the Order is confirmed by the Council, whichever first occurs.

People affected by the Order have a right to object or make comments on any of the trees and/or woodlands covered before the council decides whether the Order should be made permanent.

If you would like to make any objections or representations in respect of any trees, groups of trees or woodlands specified in the Order, please do so in writing within 28 days from the date you receive this notice. To be valid, your comments must comply with Regulation 6 of the Town and Country Planning (Tree Preservation) (England) Regulations 2012, a copy of which is included at the end of this notice. Your comments should be sent to the Director of Services at the address below. All valid objections or representations are carefully considered before the Council decides whether to confirm the Order.

The Council will write to you again when a decision has been taken on whether to confirm the Order. If you would like any further information, or have any questions about this notice, please contact Michael Bennetto on telephone no. 0116 2572697.

Dated: 27 November 2024

Signed:

Director of Services

Oadby & Wigston Borough Council Brocks Hill Council Offices

Washbrook Lane

moscow

Oadby

Leicester LE2 5JJ

COPY OF REGULATION 6 OF THE TOWN AND COUNTRY PLANNING (TREE PRESERVATION) REGULATIONS 2012

Objections and Representations

(1) Subject to paragraph (2), objections and representations-

(a) shall be made in writing and-

(i) delivered to the authority not later than the date specified by them under regulation 5(2)(c); or

(ii)sent to the authority in a properly addressed and pre-paid letter posted at such time that, in the ordinary course of post, it would be delivered to them not later than that date:

(b) shall specify the particular trees, groups of trees or woodlands (as the case may be) in respect of which the objections or representations are made; and

(c) in the case of an objection, shall state the reason for the objection.

(2) The authority may treat as duly made objections and representations which do not comply with the requirements of paragraph (1) if, in the particular case, they are satisfied that compliance with those requirements could not reasonably have been expected.

To be Retained

REQUISITION for information as to interests in land

OADBY & WIGSTON BOROUGH COUNCIL TOWN AND COUNTRY PLANNING ACT 1990 SECTION 330

To: 161 Gloucester Crescent Wigston Leicestershire LE18 4YH

Date: 27 November 2024

TAKE NOTICE that under the provisions of the Town and Country Planning Act 1990 Section 330 the Oadby & Wigston Borough Council requires you to state in writing the nature of your interest in land at Gloucester Crescent, Wigston, Leicestershire.

You are also required to state in writing the name and address of any other person/organisation known to you as having an interest in this land whether as freeholder, lessee or otherwise.

A form is attached to this notice with a covering letter on which the information required by this notice may be given by way of answers to the questions on the form.

The information must be forwarded to the address below within 21 days from the date of service of this requisition.

Signature of Proper Officer

Amoscon Director of Services

Address of Council:

Brocks Hill Council Offices

Washbrook Lane

Oadby

Leicester LE2 5JJ

NOTE:

By virtue of the Town and Country Planning Act 1990 Section 330 the Council is entitled to require the above information from you to enable it to make an order to serve any notice or other document which by any of the provisions of that Act it is authorised or required to make or serve. If you fail to provide it or knowingly make a misstatement in respect of it you may be liable to the penalties set out in Sections 330 (4) and (5) respectively of the Act.

To be Returned

REPLY to requisition for information as to interests in land regarding a Tree Preservation Order

OADBY & WIGSTON BOROUGH COUNCIL

TOWN AND COUNTRY PLANNING ACT 1990 SECTION 330

To: Oadby & Wigston Borough Council Brocks Hill Council Offices Washbrook Lane Oadby Leicestershire LE2 5JJ

Date: 27 November 2024

In reply to your notice dated 27 November 2024 under the above Act requiring us to give you certain information as to our interest and the interest of other people/organisations in land at Gloucester Crescent Wigston Leicestershire. We state that the answers to the questions set out in the schedule below comprise a true and correct statement of all the information required by your notice as far as that information is within our knowledge.

Signed		Date	
	SCH	HEDULE	
1.	What is the name and address of the occupier?		
2.	Are the land or premises held by the occupier 2.1 on a weekly tenancy? 2.2 on an agreement. If so for what period? 2.3 on a lease. If so, for what term?		
3.	What is the name and address of the person to whom rent is paid? 3.1 Is he an agent for another person?		
4.	What is the name and address of the freeholder? (owner of the property)		
5.	What is the name and address of the lease- holder?		
6.	What is the name and address of any other person having an interest in the land or premises (other than those already specified)		

PLEASE RETURN THIS FORM WITHIN 21 DAYS FROM THE DATE OF SERVICE OF THESE REQUISITIONS TO THE ADDRESS OF THE AUTHORITY GIVEN ON THE FRONT PAGE

METALFATURE OBJECTION

NOTE

This objection addresses procedural irregularities and precedent concerning two provisional Tree Preservation Orders (TPOs) served on trees at 161 Gloucester Crescent, Wigston. It should be read alongside previous objections submitted on behalf of Metalfacture.

The purpose of this document is to:

- Clarify the timeline of events surrounding both provisional TPOs.
- Highlight procedural concerns, including failure to confirm the original TPO within the statutory six-month period and the subsequent reissue without addressing prior objections.
- Demonstrate inconsistencies with established precedent in the surrounding area.

These matters are raised in the context of the Town and Country Planning Act 1990 (Section 198), the Tree Preservation (England) Regulations 2012, and the Oadby & Wigston Borough Council Tree Strategy, which commits the Council to transparency, fairness, and stakeholder engagement in all tree management decisions.

TIMELINE CONFIRMATION

A draft timeline of events was sent to Michael Bennetto, the acting Arboricultural Officer, on 19/11/25 to confirm the sequence of events and highlight the complexity of this case—none of which arose through fault of Metalfacture. Unfortunately, no response has been received.

Below is the exact as sent from that email:

August 2024 - Pre-App submitted.

November 24 – Provisional TPO imposed on most of Gloucester Crescent

December 24 - Metalfacture opposed

December 24 - Amenity assessment provided by yourself

January 25 – ACS Consulting provided a full objection report on behalf of Metalfacture

April 25 – You were chased for a response on our objection

May 25 – Trees were booked for felling. In the run up to the TPO expiry, you were contacted by Leicester Tree Care stating felling would occur (no response was received).

TPO Expiry May 25 – Trees were prepped for felling. You called whilst works were occurring instructing our contactors to stop. All bar one tree were Ring Barked.

May 25 – You issued a new TPO.

June 25 – We lodged an objection.

September 25 - The first direct response to our objections was received.

October 25 – We confirmed our objections stand despite your report and listed reasons.

October 25 – Some discussion to resolve but did not end in any agreement. Committee was delayed for negotiation.

November 25 – You called stating this would potentially be going to committee. I asked whether we could plant alternative trees and this was declined. I stated that we are submitting our full application this week for the car park as soon as our BNG report comes in (un-related to TPO).

This timeline demonstrates prolonged delays, lack of engagement, and procedural irregularities—specifically the failure to confirm the original TPO within the statutory six-month period and the subsequent reissue without addressing prior objections.

ORIGINAL PROVISIONAL TPO

Under the Town and Country Planning (Tree Preservation) (England) Regulations 2012, a provisional Tree Preservation Order remains in force for six months from the date it is made unless confirmed by the local planning authority within that period. If not confirmed, the order lapses and ceases to have effect.

The original TPO imposed on the trees at 161 Gloucester Crescent expired in May 2025 without confirmation. Despite repeated requests for engagement—including a full objection submitted in January 2025 and follow-up correspondence in April 2025—the officer did not provide a substantive response until September 2025, nine months after the initial objection.

In the run-up to the expiry date, Metalfactures contractor informed the Council that felling works were scheduled. No response was received. It was only during the works, after the original TPO had expired, that the Arboricultural Officer called the contractor directly and requested contractors to stop. By this point, works had already started.

Metalfacture wishes to raise a concern regarding the manner in which the Arboricultural Officer contacted our contractor during the felling works. Whilst it was acknowledged that, at the time, felling could legally continue, it understood that the contractor may have been persuaded to cease operations or potentially risk complicating their ability to work on other sites.

SECOND PROVISIONAL TPO

Following the expiry of the original TPO, a second provisional Tree Preservation Order was issued in May 2025. This was done without any site inspection to verify the current physiological condition of the trees after significant damage had occurred, including ring barking of T2–T5.

PROCEDURAL IMPLICATIONS

The Planning Practice Guidance requires structured and transparent assessment and consideration of objections before confirming or reissuing a TPO. Similarly, the OWBC Tree Strategy commits to fairness and stakeholder engagement. Reissuing a provisional TPO without addressing original objections is inconsistent with these principles and may be considered procedurally abnormal. No explanation has been provided regarding why 6 months was not enough time to consider the TPO. We note at this stage, the TPO and state of the trees was less complex than it later becomes. Issuing a second provisional TPO without inspecting the trees or considering their compromised state conflicts with these principles and raises concerns about whether the expediency test was properly applied. This procedural gap is significant because the physical condition of the trees directly affects their amenity value and long-term viability—key factors in determining whether a TPO is justified.

PRECEDENT

Please find below images taken from Gloucester Crescent and Cornwall Road. These photographs illustrate trees that were either not considered for protection or were previously included under a provisional Tree Preservation Order (TPO) that subsequently lapsed without confirmation. It is our understanding following a conversation with the officer at the committee meeting that none of the trees shown are currently subject to a provisional or confirmed TPO, despite being of comparable species, size, and visual amenity value to those located at 161 Gloucester Crescent.

If the proposed TPO for 161 Gloucester Crescent is confirmed, it would create an inconsistency with the precedent established in the surrounding area. The TPO officer previously determined that the trees covered by the original provisional TPO were not suitable for long-term protection, as evidenced by the decision not to confirm or reissue that order. This raises a concern that the approach taken towards the trees at Metalfacture appears inconsistent and potentially discriminatory when compared to similar cases nearby.

GLOUCESTER CRESCENT (IMAGES FROM GOOGLE STREET)

CORNWALL ROAD (IMAGES TAKEN 24/11/25)

CONCLUSION

The handling of the Tree Preservation Orders affecting 161 Gloucester Crescent raises serious concerns regarding procedural compliance, transparency, and consistency.

- The original provisional TPO was allowed to lapse without confirmation, despite repeated requests for engagement and clear statutory requirements under the Tree Preservation (England) Regulations 2012.
- A second provisional TPO was issued without resolving prior objections or conducting a site
 inspection, contrary to the principles of structured and evidence-based assessment set out in
 the Planning Practice Guidance and the OWBC Tree Strategy.
- The approach taken is inconsistent with precedent in the surrounding area, where comparable trees have not been afforded long-term protection. Confirming this TPO would create an arbitrary and unequal application of policy.

For these reasons, we respectfully submit that the proposed TPO should not be confirmed.

Metalfacture remains willing to engage constructively, including the offer to plant suitable replacement trees along the frontage, as previously communicated.